Profil Berpikir Komputasi Mahasiswa dari Prosedur Matematis ke Algoritma Program: Studi Kasus Metode Bagi Dua
Abstract
Penguasaan metode numerik tidak hanya menuntut pemahaman prosedur matematis, tetapi juga kemampuan mengonversinya ke bentuk algoritmik. Namun, banyak mahasiswa masih kesulitan mentransformasi hal tersebut. Kondisi ini menunjukkan pentingnya menelaah bagaimana mahasiswa berpikir secara komputasional saat menyusun sintaks program, khususnya pada algoritma dasar seperti Metode Bagi Dua. Penelitian ini bertujuan untuk mendeskripsikan profil berpikir komputasi (CT) mahasiswa dalam mengonversi prosedur matematika Metode Bagi Dua ke dalam program komputer. Pendekatan deskriptif kualitatif dengan desain studi kasus digunakan, melibatkan dua kelompok mahasiswa yang terdaftar dalam Mata Kuliah Metode Numerik. Data penelitian terdiri dari hasil proyek pemrograman mahasiswa, termasuk kode sumber PHP dan keluaran program. Data dianalisis dengan menggunakan Kerangka Berpikir Komputasi oleh Brennan dan Resnick, (dekomposisi, pengenalan pola, abstraksi, berpikir algoritmik, otomatisasi, dan debugging). Temuan ini mengungkapkan profil CT yang berbeda antara kedua kelompok. Kelompok pertama menunjukkan keterampilan CT dasar yang dicirikan oleh dekomposisi linear dan berpikir algoritmik dasar, dengan abstraksi terbatas dan strategi debugging minimal. Sebaliknya, kelompok kedua menunjukkan karakteristik CT yang lebih maju, termasuk dekomposisi modular, pengenalan pola perilaku konvergensi yang lebih kuat, abstraksi umum model matematika, struktur kontrol algoritmik dinamis, dan mekanisme debugging eksplisit. Struktur sintaksis mereka mencerminkan penalaran komputasi yang lebih mendalam, mengintegrasikan kondisi validasi, pemeriksaan konvergensi otomatis, dan keluaran tabular terstruktur. Secara keseluruhan, hasil menunjukkan bahwa proyek Metode Numerik berbasis pemrograman dapat secara efektif mengembangkan literasi algoritmik dan pemikiran komputasi reflektif siswa. Perbedaan dalam profil komputasi menunjukkan bahwa artefak pemrograman siswa memberikan perspektif yang bermakna untuk menilai kedalaman pemahaman konseptual dan prosedural mereka ketika menerjemahkan algoritma matematika menjadi kode yang dapat dieksekusi. Penelitian selanjutnya disarankan untuk mengembangkan instrumen asesmen digital yang mampu menilai proses berpikir mahasiswa secara otomatis, serta melakukan kajian longitudinal untuk melihat perkembangan kemampuan CT mahasiswa dari waktu ke waktu.
Downloads
References
Alonso-García, S., Rodríguez Fuentes, A. V., Ramos Navas-Parejo, M., & Victoria-Maldonado, J. J. (2024). Enhancing computational thinking in early childhood education with educational robotics: A meta-analysis. Heliyon, 10(13). https://doi.org/10.1016/j.heliyon.2024.e33249
Anggoro, B. S., Dewantara, A. H., Suherman, S., Muhammad, R. R., & Saraswati, S. (2025). Effect of game-based learning on students’ mathematics high order thinking skills: A meta-analysis. Revista de Psicodidáctica (English Ed.), 30(1), 500158. https://doi.org/10.1016/j.psicoe.2024.500158
Brennan, K., & Resnick, M. (2012). New Frameworks for Studying and Assessing the Development of Computational Thinking. Proceedings of the 2012 Annual Meeting of the American Educational Research Association (AERA).
Crilly, N. (2025). Critical thinking, creative thinking, systems thinking and many more: a comparative bibliometric analysis of prevalence and distribution. Thinking Skills and Creativity, 59(September 2025), 102014. https://doi.org/10.1016/j.tsc.2025.102014
Curi, M. E., Gerosa, A., Viera, M., & Carboni, A. (2025). A review of computational thinking interventions in upper elementary education. Computers and Education Open, 9(March), 100252. https://doi.org/10.1016/j.caeo.2025.100252
Jeong, H. (2025). Supporting interest development in gifted software education through computational thinking and project-based learning. Computers and Education Open, 9(April), 100282. https://doi.org/10.1016/j.caeo.2025.100282
Khadijah, & Suradi. (2025). Penalaran Pada Pemecahan Akar Non- Linear : Review Integratif Literasi. Pedagogy : Jurnal Pendidikan Matematika, 10(4), 1742–1758.
Kim, H., & Park, N. (2020). STEAM-Based Assessment Framework: Designing Tasks for Reflective and Creative Reasoning. International Journal of Science Education, 42(8), 1243–1261. https://doi.org/10.1080/09500693.2020.1748259
Lewis Presser, A. E., Young, J. M., Rosenfeld, D., Clements, L. J., Kook, J. F., Sherwood, H., & Cerrone, M. (2023). Data collection and analysis for preschoolers: An engaging context for integrating mathematics and computational thinking with digital tools. Early Childhood Research Quarterly, 65(June), 42–56. https://doi.org/10.1016/j.ecresq.2023.05.012
MacCallum, K. (2025). Integrating computational thinking through digital creation: The (TPAC)2K model. Teaching and Teacher Education, 161(October 2024), 105056. https://doi.org/10.1016/j.tate.2025.105056
Ocak, C., Yadav, A., & Rich, K. M. (2025). Exploring young children’s metacognition during unplugged computational thinking. International Journal of Child-Computer Interaction, 45(August 2024), 100767. https://doi.org/10.1016/j.ijcci.2025.100767
Pérez-aracil, J., Hernández-díaz, A. M., Madalin, C., & Salcedo-sanz, S. (2023). Improving numerical methods for the steel yield strain calculation in reinforced concrete members with Machine Learning algorithms. Expert Systems With Applications, 225(December 2022), 119987. https://doi.org/10.1016/j.eswa.2023.119987
Schlauch, M., Sylla, C., & Gil, M. (2025). More than words: Conceptualizing narrative computational thinking based on a multicase study. International Journal of Child-Computer Interaction, 43(October 2024). https://doi.org/10.1016/j.ijcci.2024.100704
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying Computational Thinking. Educational Research Review, 22, 74–100.
Su, J., & Yang, W. (2023). A systematic review of integrating computational thinking in early childhood education. Computers and Education Open, 4(December 2022), 100122. https://doi.org/10.1016/j.caeo.2023.100122
Suherman, S., & Vidákovich, T. (2025). Ethnomathematical test for mathematical creative thinking. Journal of Creativity, 35(2). https://doi.org/10.1016/j.yjoc.2025.100099
Troiano, G. M., Abdollahi, A., Cassidy, M., Puttick, G., Machado, T., & Harteveld, C. (2025). Leveling the computational playing field: Inquiring about factors predicting computational thinking in constructionist game-based learning. Computers and Education, 237(May), 105347. https://doi.org/10.1016/j.compedu.2025.105347
Weintrop, D., Beheshti, E., Horn, & Al, M. et. (2016). Defining computational thinking for mathematics and science. Journal of Science Education and Technology, 25, 127–147. https://link.springer.com/article/10.1007/s10956-015-9581-5?utm_source=chatgpt.com#citeas
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127–147.
Wilkie, K. J., & Hopkins, S. (2024). Primary students’ relational thinking and computation strategies with concrete-to-symbolic representations of subtraction as difference. Journal of Mathematical Behavior, 73(December 2023), 101121. https://doi.org/10.1016/j.jmathb.2023.101121
Wing, J. M. (2011). Research Notebook: Computational Thinking—What and Why? The Link Magazine.
Xiaolei, S., & Teng, M. F. (2024). Three-wave cross-lagged model on the correlations between critical thinking skills, self-directed learning competency and AI-assisted writing. Thinking Skills and Creativity, 52(October 2023). https://doi.org/10.1016/j.tsc.2024.101524
Xu, W., Geng, F., & Wang, L. (2022). Relations of computational thinking to reasoning ability and creative thinking in young children: Mediating role of arithmetic fluency. Thinking Skills and Creativity, 44(August 2021), 101041. https://doi.org/10.1016/j.tsc.2022.101041
Xu, Y., Pan, E. Z., Levine, J., He, K., Thomas, T., & Warschauer, M. (2025). The effects of interactions with AI-enhanced media characters on learning computational thinking. Learning and Instruction, 98(May), 102149. https://doi.org/10.1016/j.learninstruc.2025.102149
Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2017). Computational Thinking in Teacher Education. ACM Transactions on Computing Education (TOCE), 17(4), 1–16.
Yang, W. (2025). A three-phase professional development approach to improving robotics pedagogical knowledge and computational thinking attitude of early childhood teachers. Computers and Education, 231(December 2024). https://doi.org/10.1016/j.compedu.2025.105282



















.png)